Размер шрифта
Цвета сайта
Изображения

Обычная версия сайта

В состав элементарных мембран входят


Элементарная мембрана. Строение, функции, химический состав

Плазматическая (наружная клеточная) мембрана = плазмалемма. Ультрамикроскопическая структура. СТРОЕНИЕ: Внешний тонкий слой живой цитоплазмы; на поверхности - выросты и складки, служащие соединению клеток. В состав входят все основные группы веществ, содержащихся в клетке: белки, липиды, вода, АТФ, полисахариды (в комплексе с некоторыми наружными белками; служат рецепторами клетки) , ферменты, ионы и т. д. Строение мембран универсально. Жидкостно-мозаичная модель с гиброфобно-гидрофильными взаимодействиями: - Жидкостный двойной слой молекул фосфолипидов, обращенных друг к другу гидрофобными концами, а наружу – гидрофильными. - Периферические белки на поверхности билипидного слоя связаны с полярными головками липидных молекул электростатическим взаимодействием. - Интегральные белки пронизывают всю толщу мембраны; их гидрофобная часть погружена в гидрофобную зону билипидного слоя. - Полуинтегральные белки наполовину погружены в мембрану и выступают наружу с внутренней или внешней стороны. Плазмалемма обладает полупроницаемостью. Интегральные и полуинтегральные белки динамичны и лабильны – возможно их латеральное и частично вертикальное смещение, что обусловливает их функции.

ФУНКЦИИ: Изоляция клетки (ее живого содержимого) от окружающей среды. Ограничение и формирование свойств органоидов клетки и различных клеток. Защитная функция. Контакт с соседними клетками. Объединение клеток в ткани. Избирательная регуляция обмена веществ между клеткой и внешней средой, поступления веществ в клетку (за счет полупроницаемости) . Пиноцитоз и фагоцитоз. Выведение продуктов жизнедеятельности.Регуляция водного баланса клетки. Функции интегральных и полуинтегральных белков:

· - Рецепторная

· - Активный и пассивный транспорт

· - Составная часть ферментных систем. Компартментация – локализация различных процессов в клетки за счет разделения протопласта на зоны с различным метаболическим фондом, предупреждение смешивания образующихся веществ.

Дата добавления: 2015-07-17 | Просмотры: 1170 | Нарушение авторских прав

medlec.org

1.3. Состав и строение мембран.

1.3.1. Все мембраны по своей организации и составу обнаруживают ряд общих свойств. Они:

  • состоят из липидов, белков и углеводов;

  • являются плоскими замкнутыми структурами;

  • имеют внутреннюю и внешнюю поверхности (асимметричны);

  • избирательно проницаемы.

1.3.2. Схема строения биологической мембраны, представлена на рисунке 1.3. Основу мембраны составляет липидный бислой – двойной слой молекул липидов, которые обладают свойством амфифильности (содержат как гидрофильные, так и гидрофобные функциональные группы). В липидном бислое гидрофобные участки молекул взаимодействуют между собой, а гидрофильные участки обращены в окружающую водную среду.

Рисунок 1.3. Схема строения биологической мембраны (по Сингеру и Николсону).

Мембранные липиды выполняют роль растворителя мембранных белков, создавая жидкую среду, в которой они могут функционировать. По степени влияния на структуру бислоя и по силе взаимодействия с ним мембранные белки делят на интегральные и периферические. Важнейшие особенности интегральных и периферических белков представлены в таблице 1.

Таблица 1.1

Характеристика мембранных белков

Интегральные белки

Периферические белки

Глубоко внедрены в мембранную структуру и не могут быть удалены из мембраны без её разрушения.

Локализованы на поверхности бислоя и экстрагируются растворами солей или просто водой.

Амфифильные глобулярные структуры, центральная погружённая часть – гидрофобна, концевые участки – гидрофильны.

Глобулярные гидрофильные структуры.

Удерживаются в липидном бислое за счёт гидрофобных взаимодействий с углеводородными цепочками жирных кислот.

Удерживаются на поверхности бислоя за счёт ионных взаимодействий с полярными участками фосфолипидов и интегральных белков.

По выполняемым функциям белки в составе мембран делятся на 

  1. структурные;

  2. каталитические;

  3. рецепторные;

  4. транспортные.

Количество белков в мембранах могут существенно отличаться. Например, в миелиновой мембране, предназначенной для изоляции нервных волокон, белки составляют только 25% массы мембраны, а в мембранах митохондрий, связанных с процессами окислительного фосфорилирования, на долю белков приходится около 75% массы. В плазматической мембране доля белков и липидов примерно одинаковы.

Углеводы в составе мембран не представлены самостоятельными соединениями, а обнаруживаются только в соединении с белками (гликопротеины) или липидами (гликолипиды). Длина углеводных цепей колеблется от двух до восемнадцати остатков моносахаридов. Большая часть углеводов расположена на наружной поверхности плазматической мембраны. Функции углеводов в биомембранах – контроль за межклеточными взаимодействиями, поддержание иммунного статуса, рецепция, обеспечение стабильности белковых молекул в мембране.

1.4. Липидный состав мембран

1.4.1. Как уже упоминалось (1.1), компонентами липидов являются остатки жирных кислот и одно- или многоатомных спиртов. Примеры жирных кислот, встречающихся в составе липидов мембран, представлены на рисунке 1.4. Выучите эти формулы.

Рисунок 1.4. Наиболее часто встречающиеся природные жирные кислоты.

Основные особенности строения жирных кислот, входящих в состав природных жиров:

  • они содержат чётное число атомов углерода (С16 – С20);

  • двойная связь в ненасыщенных жирных кислотах располагается между 9 и 10 атомами углерода;

  • в полиненасыщенных жирных кислотах двойные связи разделены метиленовыми группами (СН=CH-Ch3-CH=CH), то есть являются несопряжёнными;

  • двойные связи находятся в цис-конформации, что приводит к изгибу углеводородной цепи.

1.4.2. Большинство липидов в мембранах млекопитающих представлены фосфолипидами, гликосфинголипидами и холестеролом.

Фосфолипиды в составе мембран подразделяются на две группы: глицерофосфолипиды и сфингомиелины.

Глицерофосфолипиды – представляют собой сложные эфиры трёхатомного спирта глицерола, двух остатков жирных кислот и фосфорилированного аминоспирта. Общая формула глицерофосфолипида представлена на рисунке 1.5.

Наиболее распространённым глицерофосфолипидом мембран является фосфатидилхолин:

В глицерофосфолипидах у второго углеродного атома глицерола обязательно находится остаток ненасыщенной жирной кислоты (в данном случае линолевой).

Рисунок 1.5. Общая формула глицерофосфолипидов.

Сфингофосфолипиды (сфингомиелины) являются производными аминоспирта сфингозина (рисунок 1.6). Соединение сфингозина и жирной кислоты получило название церамид.

Рисунок 1.6. Структурные формулы сфингозина и его производных.

В сфингомиелинах водород гидроксильной группы у первого углеродного атома в церамиде замещён на фосфохолин. Пример сфингомиелина, содержащего остаток олеиновой кислоты:

Гликолипиды также являются производными церамида, содержащими один или несколько остатков моносахаридов. Например, цереброзиды содержат в первом положении остаток глюкозы или галактозы:

а ганглиозиды содержат цепочку из нескольких остатков сахаров, одним из которых обязательно является сиаловая кислота.

Холестерол (рисунок 1.7) – одноатомный циклический спирт. Это один из главных компонентов плазматической мембраны клеток млекопитающих, в меньшем количестве может присутствовать также в митохондриях, мембранах комплекса Гольджи, ядерных мембранах. Особенно много его в нервной ткани.

Рисунок 1.7. Структурные формулы холестерола и его эфира.

1.4.3. Как уже было сказано, характерной особенностью мембранных липидов является их амфифильность – наличие в молекуле одновременно гидрофобных и гидрофильных участков. Гидрофобная часть молекулы представлена остатками жирных кислот и боковой цепью сфингозина.

Гидрофильные участки представлены в фосфолипидах фосфорилированным спиртом, а в гликолипидах – остатками сахаров. Амфифильность холестерола выражена слабо – циклическая структура и боковой радикал гидрофобны, и только гидроксильная группа гидрофильна.

Амфифильность мембранных липидов определяет характер их поведения в водной среде. Слипание гидрофобных участков молекул приводит к образованию упорядоченных замкнутых структур – мицелл, в которых гидрофобные области защищены от воды, а гидрофильные обращены в водную среду.

Молекулы холестерола встраиваются между радикалами жирных кислот гидрофобной части бислоя, а его гидроксильная группа примыкает к гидрофильным головкам фосфолипидов. Такая структура, стабилизированная нековалентными гидрофобными взаимодействиями, термодинамически очень устойчива и лежит в основе формирования биологических мембран.

1.4.4. Замкнутый липидный бислой определяет основные свойства мембран:

1) текучесть – зависит от соотношения насыщенных и ненасыщенных жирных кислот в составе мембранных липидов. Гидрофобные цепочки насыщенных жирных кислот ориентированы параллельно друг другу и образуют жёсткую кристаллическую структуру (рисунок 1.8, а). Ненасыщенные жирные кислоты, имеющие изогнутую углеводородную цепь, нарушают компактность упаковки и придают мембране бóльшую жидкостность (рисунок 1.8, б). Холестерол, встраиваясь между жирными кислотами, уплотняет их и повышает жёсткость мембран.

Рисунок 1.8. Влияние жирнокислотного состава фосфолипидов на текучесть липидного бислоя.

2) латеральная диффузия – свободное перемещение молекул относительно друг друга в плоскости мембран (рисунок 1.9,а).

Рисунок 1.9. Виды перемещений фосфолипидных молекул в липидном бислое.

3) ограниченная способность к поперечной диффузии (переходу молекул из наружного слоя во внутренний и наоборот, см. рисунок 1.9, б), что способствует сохранению асимметрии – структурно-функциональных различий наружного и внутреннего слоёв мембраны.

4) непроницаемость замкнутого бислоя для большинства водорастворимых молекул.

studfiles.net

Клеточная мембрана в биологии — виды, строение и функции (таблица)

1001student.ru > Биология > Клеточная мембрана в биологии — виды, строение и функции (таблица)

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Оглавление:

  • Клеточная мембрана и ее виды
  • Строение клеточной мембраны
  • Основные свойства плазматической мембраны
  • Функции наружной мембраны клетки
  • Какое значение имеет клеточная мембрана

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии;
  • ядро;
  • эндоплазматический ретикулум;
  • комплекс Гольджи;
  • лизосомы;
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.

1001student.ru

Состав мембран

Молекулярная структура биологической мембраны

Химический состав мембран

Биологические мембраны

Мембраны по строению представляют собой надмолекулярные структуры, состоящие из белков и липидов, связанных между собой нековалентными взаимодействиями.

Однако мембраны можно рассматривать как сложные белки - липопротеиды.

Мембраны выполняют в клетках следующие функции:

1) структурную – внешние мембраны отделяют клетку от окружающей среды, а внутренние мембраны делят клетку на компартменты (органеллы);

2) транспортную – мембрана обеспечивает избирательный транспорт веществ в клетку, т. е. с её помощью регулируется поступление внутрь клетки питательных веществ и выведение наружу продуктов обмена;

3) рецепторная – находящиеся в наружной мембране рецепторы (имеют белковую природу) осуществляют восприятие внешних сигналов, передают сигналы в клетку, что позволяет клетке быстро отвечать на изменения, происходящие в окружающей среде;

4) регуляторную – основное количество ферментов, регулирующих процессы метаболизма в клетке, свзаны с мембранами;

5) энергетическая или энергопреобразующая – именно на мембранах происходит превращение одного вида энергии в другой – световой энергии в энергию химических связей на внутренней мембране хлоропластов.

Основные виды мембран в клетке эукариот: плазматическая, ядерная, мембраны митохондрий, хлоропластов, эндоплазматического ретикулюма.

Мембраны состоят из липидных и белковых молекул. Относительное количество каждого класса соединений существенно различается для разных мембран: от 20% белка + 80% липидов до 75% белка + 25% липидов.

Углеводы в форме гликопрдеидов и гликолипидов составляет от 0,5 до 10% вещества мембраны.

Главную часть липидной фракции составляют фосфолипиды.

1) Липиды биомембран расположены двумя слоями. Обычно говорят о двухслойной структуре.

2) Каждый монослой состоит из сложных липидов и иногда холестерина, расположенных таким образом, что незаряженные гидрофобные хвосты находятся в тесном контакте друг с другом.

3) В таком же контакте находятся гидрофильные заряженные головы.

4) Все взаимодействия носят исключительно нековалентный характер.

5) Два монослоя совмещаются, ориентируясь хвост к хвосту, так что образуется структура двойного слоя, имеющего незаряженную (непоярную) гидрофобную внутреннюю часть и две заряженные гидрофильные поверхности. Толщина липидного двойного слоя составляет примерно 3.5-4 нм.

Липиды, входящие в состав мембран, представлены тремя основными классами полярных липидов: фосфолипидами, гликолипидами и стероидами.

Все мембранные липиды, несмотря на различие в их составе, являются амфифильными молекулами: т. е. все они построены по единому типу и имеют две области: полярные заряженные гидрофильные головы и незаряженные гидрофобные радикалы (хвосты).

Подобные амфифильные молекулы в водной среде стремятся к агрегации (взаимодействию-объединению) таким образом, что при этом гидрофобные участки молекул, стремясь избежать контакта с водой фазой, образовывают сплошные гидрофобные области, а полярные части молекул формируют границу между гидрофобной областью и водой.

Для фосфолипидов и гликолипидов, являющихся основными компонентами бислоя, термодинамически наиболее выгодно формирование бимолекулярного липидного слоя.

В бислое агрегированные молекулы липидов уложены в виде параллельных монослоёв, повёрнутых друг к другу своими гидрофобными участками.

Полярные группы липидных молекул образуют две гидрофильные поверхности, отделяющие гидрофильную фазу от внешней среды.

Page 2

Функции мембранных белков

Мембранные белки

По расположению белков в мембране и способу ассоциации с липидным слоем их можно разделить на:

1) поверхностные или периферические мембранные белки, связанные с гидрофильной поверхностью липидного бислоя;

2) погружённые в гидрофобную область бислоя – интегральныемембранные белки.

Периферические белки связаны полярными радикалами с гидрофильной поверхностью бислоя за счёт ионных и водородных связей.

Интегральные белки, как и липиды, являются амфифильными молекулами:

а) у них есть гидрофобные области, взаимодействующие с гидрофобными радикалами липидных молекул внутри бислоя;

и гидрофильные области, обращённые с обеих сторон мембраны к воде.

На основании функций, которые выполняют мембранные белки их можно разделить на две группы:

- структурные белки – поддерживают структуру всей мембраны. Это, как правило, периферийные белки.

- динамические белки - непосредственно участвуют в процессах, происходящих на мембране.

Выделяют три класса таких белков:

- транспортные – участвуют в переносе веществ через мембрану;

- каталитические - это ферменты, интегрированные в мембрану и катализирующие происходящие там реакции;

- рецепторные – это мембранные рецепторы, специфически связывающие сигнальные молекулы (гормоны, токсины) на наружной стороне мембраны, что служит сигналом для изменения процессов обмена на мембране и внутри клетки.

К наиболее важным свойствам мембран следует отнести:

- замкнутость мембран;

- ассиметричность мембран;

- динамичность мембран;

- избирательный транспорт веществ через мембрану.

Замкнутость мембран. В процессе самосборки липидные слои замыкаются сами на себя, что позволяет их гидрофобным хвостам полностью избегать контактов с водой. При этом образуются замкнутые области внутри клетки – органеллы.

Ассиметричность мембран. По химическому составу наружная поверхность мембран отличается от внутренней:

а) в состав наружного слоя мембраны входит больше холестерина и липидов, содержащих остатки придельных жирных кислот, такой состав обеспечивает жёсткость наружного слоя мембраны, защищая тем самым клетку от механических повреждений.

Липиды, входящие во внутренний слой мембраны, содержат большее количество остатков непредельных жирных кислот, что обусловливает текучесть внутреннего слоя.

б) наиболее ассиметрично распределены в мембране гликолипиды и гликопротеины: углеводные части гликопротеинов и гликолипидов выходят на наружную поверхность мембраны.

Динамичность мембран. Отдельные молекулы мембранных липидов и белков свободно перемещаются в мембране – участвуют в двух видах движения – продольном и вращательном:

продольное – меняются со своими соседями местами в приделах одного монослоя;

вращательное – вращаются вокруг собственной оси;

перепрыгивают из наружного слоя во внутренний и обратно.

Избирательный транспорт веществ через мембрану:

а) пассивный транспорт - осуществляется без затраты энергии, благодаря:

- градиенту концентраций по разные стороны мембраны для незаряженных частиц;

- направлением электрического поля для ионов металлов;

б) активный или энергозависимый транспорт – транспорт вещества против градиента концентрации, т. е. перенос вещества в область более высоких концентраций. Для активного транспорта используется энергия АТФ. Транспорт осуществляется с помощью мембранных белков.

studopedia.su

Строение и функции биологических мембран. Транспорт веществ через биологические мембраны

9.5.1. Одна из главных функций мембран – участие в переносе веществ. Этот процесс обеспечивается при помощи трёх основных механизмов: простой диффузией, облегчённой диффузией и активным транспортом (рисунок 9.10). Запомните важнейшие особенности этих механизмов и примеры транспортируемых веществ в каждом случае.

Рисунок 9.10. Механизмы транспорта молекул через мембрану

Простая диффузия - перенос веществ через мембрану без участия специальных механизмов. Транспорт происходит по градиенту концентрации без затраты энергии. Путём простой диффузии транспортируются малые биомолекулы – Н2О, СО2, О2, мочевина, гидрофобные низкомолекулярные вещества. Скорость простой диффузии пропорциональна градиенту концентрации.

Облегчённая диффузия - перенос веществ через мембрану при помощи белковых каналов или специальных белков-переносчиков. Осуществляется по градиенту концентрации без затраты энергии. Транспортируются моносахариды, аминокислоты, нуклеотиды, глицерол, некоторые ионы. Характерна кинетика насыщения – при определённой (насыщающей) концентрации переносимого вещества в переносе принимают участие все молекулы переносчика и скорость транспорта достигает предельной величины.

Активный транспорт – также требует участия специальных белков-переносчиков, но перенос происходит против градиента концентрации и поэтому требует затраты энергии. При помощи этого механизма через клеточную мембрану транспортируются ионы Na+, K+, Ca2+, Mg2+, через митохондриальную – протоны. Для активного транспорта веществ характерна кинетика насыщения.

9.5.2. Примером транспортной системы, осуществляющей активный транспорт ионов, является Na+,K+-аденозинтрифосфатаза (Na+,K+-АТФаза или Na+,K+-насос). Этот белок находится в толще плазматической мембраны и способен катализировать реакцию гидролиза АТФ. Энергия, выделяемая при гидролизе 1 молекулы АТФ, используется для переноса 3 ионов Na+ из клетки во внеклеточное пространство и 2 ионов К+ в обратном направлении (рисунок 9.11). В результате действия Na+,K+-АТФазы создаётся разность концентраций между цитозолем клетки и внеклеточной жидкостью. Поскольку перенос ионов неэквивалентен, то возникает разность электрических потенциалов. Таким образом, возникает электрохимический потенциал, который складывается из энергии разности электрических потенциалов Δφ и энергии разности концентраций веществ ΔС по обе стороны мембраны.

Рисунок 9.11. Схема Na+, K+-насоса.

9.5.3. Перенос через мембраны частиц и высокомолекулярных соединений

Наряду с транспортом органических веществ и ионов, осуществляемым переносчиками, в клетке существует совершенно особый механизм, предназначенный для поглощения клеткой и выведения из неё высокомолекулярных соединений при помощи изменения формы биомембраны. Такой механизм называют везикулярным транспортом.

Рисунок 9.12. Типы везикулярного транспорта: 1 - эндоцитоз; 2 - экзоцитоз.

При переносе макромолекул происходит последовательное образование и слияние окружённых мембраной пузырьков (везикул). По направлению транспорта и характеру переносимых веществ различают следующие типы везикулярного транспорта:

Эндоцитоз (рисунок 9.12, 1) — перенос веществ в клетку. В зависимости от размера образующихся везикул различают:

а) пиноцитоз — поглощение жидкости и растворённых макромолекул (белков, полисахаридов, нуклеиновых кислот) с помощью небольших пузырьков (150 нм в диаметре);

б) фагоцитоз — поглощение крупных частиц, таких, как микроорганизмы или обломки клеток. В этом случае образуются крупные пузырьки, называемые фагосомами диаметром более 250 нм.

Пиноцитоз характерен для большинства эукариотических клеток, в то время как крупные частицы поглощаются специализированными клетками - лейкоцитами и макрофагами. На первой стадии эндоцитоза вещества или частицы адсорбируются на поверхности мембраны, этот процесс происходит без затраты энергии. На следующей стадии мембрана с адсорбированным веществом углубляется в цитоплазму; образовавшиеся локальные впячивания плазматической мембраны отшнуровываются от поверхности клетки, образуя пузырьки, которые затем мигрируют внутрь клетки. Этот процесс связан системой микрофиламентов и является энергозависимым. Поступившие в клетку пузырьки и фагосомы могут сливаться с лизосомами. Содержащиеся в лизосомах ферменты расщепляют вещества, содержащиеся в пузырьках и фагосомах до низкомолекулярных продуктов (аминокислот, моносахаридов, нуклеотидов), которые транспортируются в цитозоль, где они могут быть использованы клеткой.

Экзоцитоз (рисунок 9.12, 2) — перенос частиц и крупных соединений из клетки. Этот процесс, как и эндоцитоз, протекает с поглощением энергии. Основными разновидностями экзоцитоза являются:

а) секреция - выведение из клетки водорастворимых соединений, которые используются или воздействуют на другие клетки организма. Может осуществляться как неспециализированными клетками, так и клетками эндокринных желёз, слизистой желудочно-кишечного тракта, приспособленными для секреции производимых ими веществ (гормонов, нейромедиаторов, проферментов) в зависимости от определённых потребностей организма.

Секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума. Затем эти белки транспортируются к аппарату Гольджи, где они модифицируются, концентрируются, сортируются, и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в дальнейшем сливаются с плазматической мембраной, так что содержимое пузырьков оказывается вне клетки.

В отличие от макромолекул, секретируемые частицы малых размеров, например, протоны, транспортируются из клетки при помощи механизмов облегчённой диффузии и активного транспорта.

б) экскреция - удаление из клетки веществ, которые не могут быть использованы (например, удаление в ходе эритропоэза из ретикулоцитов сетчатой субстанции, представляющей собой агрегированные остатки органелл). Механизм экскреции, по-видимому, состоит в том, что вначале выделяемые частицы оказываются в цитоплазматическом пузырьке, который затем сливается с плазматической мембраной.

dendrit.ru


Смотрите также

 

2011-2017 © МБУЗ ГКП №  7, г.Челябинск.