Размер шрифта
Цвета сайта
Изображения

Обычная версия сайта

Основу клеточной мембраны составляют


Клеточная мембрана

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

клеточная мембрана | Определение, функция и структура

Клеточная мембрана , также называемая Плазматическая мембрана , тонкая мембрана, которая окружает каждую живую клетку, отделяя клетку от окружающей ее среды. Этой клеточной мембраной (также известной как плазматическая мембрана) заключены составляющие клетки, часто крупные, водорастворимые, сильно заряженные молекулы, такие как белки, нуклеиновые кислоты, углеводы и вещества, участвующие в клеточном метаболизме. Вне клетки, в окружающей водной среде находятся ионы, кислоты и щелочи, которые токсичны для клетки, а также питательные вещества, которые клетка должна поглощать, чтобы жить и расти.Таким образом, клеточная мембрана выполняет две функции: во-первых, быть барьером, удерживающим компоненты клетки и нежелательные вещества, и, во-вторых, быть воротами, позволяющими транспортировать в клетку необходимые питательные вещества и перемещаться из клетки отходов. товары.

молекулярный вид клеточной мембраны Собственные белки проникают и плотно связываются с липидным бислоем, который в основном состоит из фосфолипидов и холестерина и который обычно составляет от 4 до 10 нанометров (нм; 1 нм = 10 −9 метр) по толщине.Внешние белки слабо связаны с гидрофильными (полярными) поверхностями, которые обращены к водной среде как внутри, так и снаружи клетки. Некоторые внутренние белки присутствуют в боковых цепях сахара на внешней поверхности клетки. Encyclopædia Britannica, Inc.

Британика Викторина

Тело человека

Где находится пищевод?

Клеточные мембраны

состоят в основном из липидов и белков на основе жирных кислот.Мембранные липиды в основном бывают двух типов: фосфолипиды и стерины (обычно холестерин). Оба типа имеют общие характеристики липидов - они легко растворяются в органических растворителях - но кроме того, они оба имеют область, которая притягивается и растворяется в воде. Это «амфифильное» свойство (обладающее двойным притяжением; т.е. содержащее как растворимый в липидах, так и водорастворимый участок) является основополагающим для роли липидов в качестве строительных блоков клеточных мембран. Мембранные белки также бывают двух основных типов.Один тип, называемый внешними белками, слабо связан ионными связями или кальциевыми мостиками с электрически заряженной фосфорильной поверхностью бислоя. Они также могут прикрепляться ко второму типу белка, называемому собственными белками. Собственные белки, как следует из их названия, прочно встроены в фосфолипидный бислой. В целом, мембраны, активно участвующие в метаболизме, содержат более высокую долю белка.

Химическая структура клеточной мембраны делает ее чрезвычайно гибкой, идеальной границей для быстро растущих и делящихся клеток.Тем не менее, мембрана также является грозным барьером, позволяющим некоторым растворенным веществам или растворенным веществам проходить, блокируя другие. Растворимые в липидах молекулы и некоторые небольшие молекулы могут проникать через мембрану, но липидный бислой эффективно отталкивает многие большие растворимые в воде молекулы и электрически заряженные ионы, которые клетка должна импортировать или экспортировать, чтобы жить. Транспорт этих жизненно важных веществ осуществляется определенными классами собственных белков, которые образуют различные транспортные системы: некоторые являются открытыми каналами, которые позволяют ионам диффундировать непосредственно в клетку; другие являются «фасилитаторами», которые помогают растворенным веществам проходить через липидный экран; третьи - это «насосы», которые заставляют растворяться через мембрану, когда они недостаточно сконцентрированы для самопроизвольной диффузии.Частицы, слишком большие для диффузии или перекачивания, часто проглатываются или выдавливаются целиком путем открытия и закрытия мембраны.

При осуществлении трансмембранных движений больших молекул клеточная мембрана сама подвергается согласованным движениям, во время которых часть жидкой среды вне клетки интернализуется (эндоцитоз) или часть внутренней среды клетки выводится наружу (экзоцитоз). Эти движения включают слияние между мембранными поверхностями с последующим повторным образованием неповрежденных мембран.

рецептор-опосредованный эндоцитоз Рецепторы играют ключевую роль во многих клеточных процессах. Например, рецептор-опосредованный эндоцитоз позволяет клеткам поглощать молекулы, такие как белки, которые необходимы для нормального функционирования клеток. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня ,

Как работает клеточная мембрана?

Все живые существа состоят из клеток, и все клетки имеют разные части, которые выполняют определенные функции. Одна из частей, присутствующих в каждой клетке, называется клеточной мембраной.

В этой статье мы обсудим структуру и функцию клеточной мембраны, ответим на вопросы «что делает клеточная мембрана?» и «почему клеточная мембрана важна?»

Что делает клеточная мембрана?

Основная функция клеточной мембраны заключается в защите внутренней части клетки. Клеточная мембрана окружает цитоплазму клетки (клетки растений и животных). Будучи тонким полупроницаемым веществом, клеточная мембрана пропускает некоторые вещи внутрь клетки, не давая другим проникнуть внутрь. Клеточная мембрана чрезвычайно важна для поддержания безопасности клетки.

Поскольку клеточная мембрана имеет полупроницаемую структуру, она также придает клетке немного формы. Несмотря на то, что клеточная стенка не такая толстая или крепкая, как клеточная стенка, присутствующая в растительных клетках, она помогает поддерживать и придавать структуру клетке.

Клеточная мембрана также ответственна за то, что помогает клеткам расти посредством двух процессов, известных как эндоцитоз и экзоцитоз.

Что такое эндоцитоз?

Во время эндоцитоза материалы извне клетки вводятся в клетку и затем абсорбируются. Эндоцитоз помогает клеткам получать нужные им материалы.

Существует три типа эндоцитоза. При пиноцитозе клеток потребляют небольшое количество внеклеточной жидкости, чтобы помочь им увлажниться.В рецептор-медиат

.

сот | Определение, типы и функции

Рассмотрим, как одноклеточный организм содержит необходимые структуры для питания, роста и размножения. Клетки являются основными единицами жизни. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Ячейка , в биологии, основная мембраносвязанная единица, которая содержит фундаментальные молекулы жизни и из которых состоят все живые существа. Отдельная клетка часто представляет собой целостный организм, такой как бактерия или дрожжи.Другие клетки приобретают специализированные функции по мере взросления. Эти клетки взаимодействуют с другими специализированными клетками и становятся строительными блоками крупных многоклеточных организмов, таких как люди и другие животные. Хотя клетки намного крупнее атомов, они все еще очень малы. Самые маленькие известные клетки - это группа крошечных бактерий, называемых микоплазмами; некоторые из этих одноклеточных организмов представляют собой сферы диаметром всего 0,2 мкм (1 мкм = около 0,000039 дюйма), общей массой 10 –14 грамм, что соответствует массе 8 000 000 000 атомов водорода.Клетки человека обычно имеют массу в 400 000 раз больше, чем масса отдельной микоплазменной бактерии, но даже человеческие клетки имеют ширину всего около 20 мкм. Для покрытия головки булавки потребуется лист из примерно 10000 клеток человека, и каждый организм человека состоит из более чем 30 000 000 000 000 клеток.

клетка животного Основные структуры клетки животногоЦитоплазма окружает специализированные структуры клетки или органеллы. Рибосомы, сайты синтеза белка, обнаружены свободными в цитоплазме или прикреплены к эндоплазматической сети, через которую материалы транспортируются по всей клетке.Энергия, необходимая клетке, выделяется митохондриями. Комплекс Гольджи, стопки сплющенных мешочков, перерабатывает и упаковывает материалы, которые должны быть выпущены из клетки в секреторные пузырьки. Пищеварительные ферменты содержатся в лизосомах. Пероксисомы содержат ферменты, которые детоксифицируют опасные вещества. Центросома содержит центриоли, которые играют роль в делении клеток. Микроворсинки - это пальцеобразные расширения, обнаруживаемые в определенных клетках. Реснички, похожие на волосы структуры, которые простираются от поверхности многих клеток, могут создавать движение окружающей жидкости.Ядерная оболочка, двойная мембрана, окружающая ядро, содержит поры, которые контролируют движение веществ в и из нуклеоплазмы. Хроматин, комбинация ДНК и белков, которые скручиваются в хромосомы, составляет большую часть нуклеоплазмы. Плотное ядрышко является местом образования рибосом. © Merriam-Webster Inc.

Основные вопросы

Что такое клетка?

Клетка - это масса цитоплазмы, которая внешне связана клеточной мембраной. Обычно микроскопические по размеру клетки представляют собой наименьшие структурные единицы живой материи и составляют все живые существа.У большинства клеток есть одно или несколько ядер и других органелл, которые выполняют множество задач. Некоторые отдельные клетки являются полноценными организмами, такими как бактерия или дрожжи. Другие являются специализированными строительными блоками многоклеточных организмов, таких как растения и животные.

Что такое клеточная теория?

Теория клетки утверждает, что клетка является фундаментальной структурной и функциональной единицей живой материи. В 1839 году немецкий физиолог Теодор Шванн и немецкий ботаник Матиас Шлейден объявили, что клетки являются «элементарными частицами организмов» как у растений, так и у животных, и признали, что некоторые организмы являются одноклеточными, а другие - многоклеточными.Эта теория ознаменовала большой концептуальный прогресс в биологии и привела к возобновлению внимания к живым процессам, происходящим в клетках.

Что делают клеточные мембраны?

Клеточная мембрана окружает каждую живую клетку и отделяет клетку от окружающей среды. Он служит барьером для предотвращения попадания содержимого клетки и нежелательных веществ. Он также функционирует в качестве шлюза для активного и пассивного перемещения важных питательных веществ в клетку и отходов из нее.Определенные белки в клеточной мембране участвуют в межклеточной коммуникации и помогают клетке реагировать на изменения в окружающей среде.

В этой статье рассматривается клетка как отдельная единица и как часть более крупного организма. Как отдельная единица, клетка способна метаболизировать свои собственные питательные вещества, синтезировать многие типы молекул, снабжать своей собственной энергией и размножаться, чтобы произвести следующие поколения. Его можно рассматривать как закрытый сосуд, в котором одновременно происходят бесчисленные химические реакции.Эти реакции находятся под очень точным контролем, так что они способствуют жизни и размножению клетки. В многоклеточном организме клетки становятся специализированными для выполнения различных функций в процессе дифференцировки. Для этого каждая ячейка поддерживает постоянную связь со своими соседями. Поскольку он получает питательные вещества и выбрасывает отходы в окружающую среду, он прилипает к другим клеткам и взаимодействует с ними. Кооперативные собрания подобных клеток образуют ткани, а взаимодействие тканей в свою очередь образует органы, которые выполняют функции, необходимые для поддержания жизни организма.

Особое внимание в этой статье уделяется клеткам животных с некоторым обсуждением процессов синтеза энергии и внеклеточных компонентов, свойственных растениям. (Для подробного обсуждения биохимии растительных клеток, см. фотосинтеза. Для полной обработки генетических событий в ядре клетки, см. Наследственность .)

Брюс М. Альбертс

Природа и функции клеток

A клетка окружена плазматической мембраной, которая образует селективный барьер, который позволяет питательным веществам поступать и отходы уходят.Внутренняя часть клетки организована во множество специализированных отделений или органелл, каждый из которых окружен отдельной мембраной. Одна из основных органелл, ядро, содержит генетическую информацию, необходимую для роста и размножения клеток. Каждая клетка содержит только одно ядро, тогда как другие типы органелл присутствуют в нескольких копиях в клеточном содержимом или цитоплазме. Органеллы включают митохондрии, которые отвечают за энергетические транзакции, необходимые для выживания клеток; лизосомы, которые переваривают нежелательные вещества внутри клетки; и эндоплазматический ретикулум и аппарат Гольджи, которые играют важную роль во внутренней организации клетки, синтезируя выбранные молекулы, а затем обрабатывая, сортируя и направляя их в соответствующие места.Кроме того, растительные клетки содержат хлоропласты, которые отвечают за фотосинтез, посредством чего энергия солнечного света используется для преобразования молекул углекислого газа (CO 2 ) и воды (H 2 O) в углеводы. Между всеми этими органеллами находится пространство в цитоплазме, называемое цитозолем. Цитозоль содержит организованный каркас из волокнистых молекул, которые составляют цитоскелет, который придает клетке свою форму, позволяет органеллам двигаться внутри клетки и обеспечивает механизм, посредством которого сама клетка может двигаться.Цитозоль также содержит более 10000 различных видов молекул, которые участвуют в клеточном биосинтезе, процессе создания больших биологических молекул из маленьких.

клетки Животные клетки и клетки растений содержат мембраносвязанные органеллы, включая отдельное ядро. Напротив, бактериальные клетки не содержат органелл. Encyclopædia Britannica, Inc. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Специализированные органеллы характерны для клеток организмов, известных как эукариоты.Напротив, клетки организмов, известные как прокариоты, не содержат органелл и, как правило, меньше, чем эукариотические клетки. Тем не менее, все клетки имеют сильное сходство в биохимической функции.

эукариотическая клетка Вырез эукариотической клетки. Encyclopædia Britannica, Inc.

Молекулы клеток

Понять, как клеточные мембраны регулируют потребление пищи и отходов и как клеточные стенки обеспечивают защиту Клетки поглощают молекулы через свои плазматические мембраны. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Клетки содержат специальную коллекцию молекул, которые заключены в мембрану. Эти молекулы дают клеткам возможность расти и размножаться. Общий процесс клеточного размножения происходит в два этапа: рост клеток и деление клеток. Во время роста клетки, клетки поглощают определенные молекулы из окружающей среды, избирательно пронося их через клеточную мембрану. Оказавшись внутри клетки, эти молекулы подвергаются действию узкоспециализированных, крупных, сложным образом сложенных молекул, называемых ферментами.Ферменты действуют как катализаторы, связываясь с поглощенными молекулами и регулируя скорость, с которой они химически изменяются. Эти химические изменения делают молекулы более полезными для клетки. В отличие от поглощенных молекул, катализаторы не подвергаются химическому изменению во время реакции, что позволяет одному катализатору регулировать определенную химическую реакцию во многих молекулах.

Биологические катализаторы создают цепочки реакций. Другими словами, молекула, химически трансформированная одним катализатором, служит в качестве исходного материала или субстрата второго катализатора и так далее.Таким образом, катализаторы используют небольшие молекулы, введенные в клетку из внешней среды, для создания все более сложных продуктов реакции. Эти продукты используются для роста клеток и репликации генетического материала. Как только генетический материал скопирован и имеется достаточное количество молекул для поддержки клеточного деления, клетка делится, создавая две дочерние клетки. Через множество таких циклов роста и деления клеток каждая родительская клетка может породить миллионы дочерних клеток, превращая большое количество неодушевленного вещества в биологически активные молекулы.


Смотрите также

 

2011-2017 © МБУЗ ГКП №  7, г.Челябинск.