Размер шрифта
Цвета сайта
Изображения

Обычная версия сайта

Что такое жидкость


Жидкость - это... Что такое Жидкость?

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[1].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация
Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности
Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением и температурой . Характерными параметрами являются средняя кинетическая энергия молекулы и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) . Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[2][3][4]. У неньютоновской жидкости вязкость зависит от градиента скорости.[5][6]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где  — число частиц в единице объёма,  — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 20 марта 2012.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Примечания

  1. В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  2. «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  3. Физическая энциклопедия: Ньютоновская жидкость
  4. Ньютоновская жидкость — статья из Физической энциклопедии
  5. Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  6. Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978

Жидкость - это... Что такое Жидкость?

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[1].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация
Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности
Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением и температурой . Характерными параметрами являются средняя кинетическая энергия молекулы и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) . Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[2][3][4]. У неньютоновской жидкости вязкость зависит от градиента скорости.[5][6]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где  — число частиц в единице объёма,  — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 20 марта 2012.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Примечания

  1. В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  2. «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  3. Физическая энциклопедия: Ньютоновская жидкость
  4. Ньютоновская жидкость — статья из Физической энциклопедии
  5. Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  6. Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978

Жидкость - это... Что такое Жидкость?

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[1].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация
Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности
Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением и температурой . Характерными параметрами являются средняя кинетическая энергия молекулы и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) . Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[2][3][4]. У неньютоновской жидкости вязкость зависит от градиента скорости.[5][6]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где  — число частиц в единице объёма,  — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 20 марта 2012.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Примечания

  1. В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  2. «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  3. Физическая энциклопедия: Ньютоновская жидкость
  4. Ньютоновская жидкость — статья из Физической энциклопедии
  5. Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  6. Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978

Жидкость - это... Что такое Жидкость?

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[1].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация
Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности
Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением и температурой . Характерными параметрами являются средняя кинетическая энергия молекулы и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) . Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[2][3][4]. У неньютоновской жидкости вязкость зависит от градиента скорости.[5][6]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где  — число частиц в единице объёма,  — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 20 марта 2012.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Примечания

  1. В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  2. «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  3. Физическая энциклопедия: Ньютоновская жидкость
  4. Ньютоновская жидкость — статья из Физической энциклопедии
  5. Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  6. Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978

Жидкость - это... Что такое Жидкость?

Жи́дкость — одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Общая информация

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое[1].

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

Физические свойства жидкостей

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение.)

  • Испарение и конденсация
Водяной пар, содержащийся в воздухе, конденсируется в жидкость после соприкосновения с холодной поверхностью бутылки.

Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.

Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.

Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.

Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.

Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.

Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.

  • Смешиваемость

Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.

Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространяться упругие волны, более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком.

Если плотность меняется достаточно сильно, то такая волна называется ударной волной. Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания — вязкость, «классическое поглощение», молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость — внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности
Волны на поверхности воды

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости.

Если возвращающая сила — это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила — это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости затухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества — газообразной или кристаллической — нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием — например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

— Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс — конденсация.

— Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

— Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление. Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики — гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика — часть более общей отрасли механики, механики сплошной среды.

Гидромеханика — это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика.

Гидромеханика подразделяется на гидростатику, в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике. Для решения прикладных задач применяется гидравлика.

Основной закон гидростатики — закон Паскаля.

Движение идеальной несжимаемой жидкости описывается уравнением Эйлера. Для стационарного потока такой жидкости выполняется закон Бернулли. Вытекание жидкости из отверстий описывается формулой Торричелли.

Движение вязкой жидкости описывается уравнением Навье-Стокса, в котором возможен и учёт сжимаемости.

Упругие колебания и волны в жидкости (и в других средах) исследуются в акустике. Гидроакустика — раздел акустики, в котором изучается звук в реальной водной среде для целей подводной локации, связи и др.

Молекулярно-кинетическое рассмотрение

Агрегатное состояние вещества определяется внешними условиями, главным образом давлением и температурой . Характерными параметрами являются средняя кинетическая энергия молекулы и средняя энергия взаимодействия между молекулами (в расчете на одну молекулу) . Для жидкостей эти энергии приблизительно равны: для твёрдых тел энергия взаимодействия намного больше кинетической, для газов — намного меньше.

Классификация жидкостей

Структура и физические свойства жидкости зависят от химической индивидуальности составляющих их частиц и от характера и величины взаимодействия между ними. Можно выделить несколько групп жидкостей в порядке возрастания сложности.

1. Атомарные жидкости или жидкости из атомов или сферических молекул, связанных центральными ван-дер-ваальсовскими силами (жидкий аргон, жидкий метан).

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород, жидкий азот). Такие молекулы обладают квадрупольным моментом.

3. Жидкие непереходные металлы (натрий, ртуть), в которых частицы (ионы) связаны дальнодействующими кулоновскими силами.

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода, глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы.

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы, которые представляют собой особые случаи и должны рассматриваться отдельно.

В гидродинамике жидкости делятся на ньютоновские и неньютоновские. Течение ньютоновской жидкости подчиняется закону вязкости Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[2][3][4]. У неньютоновской жидкости вязкость зависит от градиента скорости.[5][6]

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где  — число частиц в единице объёма,  — безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа: . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений. В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория». В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру. Энергия частиц отвечает распределению Больцмана, средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье. Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 20 марта 2012.

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии и нейтронографии.

См. также

Ссылки

Примечания

  1. В технической гидромеханике иногда жидкостью в широком смысле этого слова называют и газ; при этом жидкость в узком смысле слова называют капельной жидкостью.
  2. «Физическая энциклопедия». В 5-ти томах. М.: «Советская энциклопедия», 1988
  3. Физическая энциклопедия: Ньютоновская жидкость
  4. Ньютоновская жидкость — статья из Физической энциклопедии
  5. Уилкинсон У. Л., Неньютоновские жидкости, пер. с англ., М., 1964
  6. Астарита Д ж., Марруччи Д ж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978

ЖИДКОСТЬ - это... Что такое ЖИДКОСТЬ?

  • Жидкость — – жидкое вещество с абсолютным давлением испарения не выше 300 кПа при 50°С. или другим давлением, установленным компетентным органом.                                                                                                           … …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ЖИДКОСТЬ — ЖИДКОСТЬ, жидкости, жен. 1. Вещество, обладающее свойством течь и принимать форму сосуда, в котором находится, сохраняя неизменным свой объем. Бутылка с мутной жидкостью. Жидкость от клопов. 2. только ед. отвлеч. сущ. к жидкий во 2, 3, 4, 5 и 6… …   Толковый словарь Ушакова

  • ЖИДКОСТЬ — агрегатное состояние в ва, промежуточное между твёрдым и газообразным. Ж. присущи нек рые черты твёрдого тела (сохраняет свой объём, образует поверхность, обладает определ. прочностью на разрыв) и газа (принимает форму сосуда, в к ром находится,… …   Физическая энциклопедия

  • ЖИДКОСТЬ — вовнутрь. Жарг. мол. Шутл. Водка. Максимов, 131. Обжигающая (сухая) жидкость. Жарг. мол. Шутл. Водка. Максимов, 131. Тормозная жидкость. Жарг. мол. Шутл. ирон. 1. То же, что обжигающая жидкость. 2. Напиток «Фанта». Максимов, 131. Обмениваться… …   Большой словарь русских поговорок

  • жидкость — транссудат, пасока, эмульсол, влага, ликвор, раствор, водянистость Словарь русских синонимов. жидкость влага Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011 …   Словарь синонимов

  • ЖИДКОСТЬ — ЖИДКОСТЬ, агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость обладает свойством текучести, принимает форму сосуда, в который налита, обладает упругими свойствами и т.д. Частицы жидкости (молекулы, атомы) более… …   Современная энциклопедия

  • Жидкость — ЖИДКОСТЬ, агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкость обладает свойством текучести, принимает форму сосуда, в который налита, обладает упругими свойствами и т.д. Частицы жидкости (молекулы, атомы) более… …   Иллюстрированный энциклопедический словарь

  • ЖИДКОСТЬ — агрегатное состояние вещества, сочетающее в себе черты твердого состояния (сохранение объема, определенная прочность на разрыв) и газообразного (изменчивость формы). Для жидкости характерны ближний порядок в расположении частиц (молекул, атомов)… …   Большой Энциклопедический словарь

  • ЖИДКОСТЬ — ЖИДКОСТЬ, и, жен. 1. см. жидкий. 2. Вещество, обладающее свойством течь и принимать форму сосуда, в к рый оно выливается. | прил. жидкостный, ая, ое (спец.). Ж. двигатель (на жидком топливе). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова.… …   Толковый словарь Ожегова

  • Жидкость — вещество в конденсированном агрегатном состоянии, промежуточном между твердым и газообразным. Подобно твердому телу, Ж. обладает большой плотностью, малой сжимаемостью (сохраняет свой объем) и определенной прочностью на разрыв; подобно газу, не… …   Российская энциклопедия по охране труда

  • Понятие о жидкости и ее физических свойствах.

    Что такое жидкость?

    

    Поскольку гидравлика изучает законы равновесия и движения жидкости, необходимо определиться – что же такое жидкость и какими свойствами она обладает.
    Согласно наиболее широко принятому определению, жидкостью называют агрегатное состояние вещества, сочетающее в себе признаки как твердого, так и газообразного состояния, т. е. являющееся некоторой переходной формой от твердого состояния вещества к газообразному. При этом жидкость обладает определенным рядом свойств, не присущих другим агрегатным состояниям.
    Это сплошная среда, способная легко изменять свою форму под действием даже небольших силовых факторов.

    Если рассматривать микроструктуру жидкого вещества, то, в отличие от газообразных веществ, жидкие сохраняют достаточно устойчивые связи между внутренними частицами, но менее прочные, чем у твердых веществ. Именно благодаря ослаблению внутренних связей между частицами, жидкости могут легко изменять форму (деформироваться), практически не выдерживая внешних нагрузок.
    Эта способность жидкости деформироваться под действием даже малых сил называются текучестью.
    Кроме того, массивы жидкости не обладают прочностью и могут легко распадаться на более мелкие составные части, вплоть до мельчайших капель, поэтому классические жидкости обычно называют «капельными жидкостями».

    Еще одним свойством жидкостей, отличающих их от газов, является ничтожно малая сжимаемость, т. е. они почти не изменяют свой объем при сжатии в замкнутом объеме (сосуде). Именно это свойство жидкостей широко используется в различных гидроприводах механизмов.

    Физические свойства жидкостей

    Жидкости характеризуются следующими основными физическими свойствами: плотностью, удельным весом, удельным объемом, сжимаемостью, вязкостью.

    Плотностью (или удельной массой) ρ (кг/м3) любого вещества называют массу этого вещества, заключенную в единице объема. Это определение в полной мере относится и к жидкостям:

    ρ = m/V

    Так, например, для дистиллированной воды при температуре 4 °С плотность ρ равна 1000 кг/м3, т.е. в каждом кубометре объема вмещается 1000 кг воды.

    Удельным весом γ (Н/м3) называют вес единицы объема жидкости:

    γ = G/V = mg/(m/ρ) = ρg

    Очевидно, что удельный вес связан с удельной массой величиной q - ускорения свободного падения, поскольку вес любого тела на поверхности Земли определяется формулой: G = mq.
    Для дистиллированной воды при температуре 4 °С удельный вес γ ≈ 9810 Н/м3. Это означает, что каждый кубометр воды притягивается к Земле силой тяжести примерно равной 9810 Н.

    Удельным объемом v (м3/кг) жидкости называют объем, занимаемый единицей массы жидкости:

    v = V/m = 1/ρ

    Объем жидкости существенно зависит от температуры: при ее повышении он увеличивается и наоборот - при охлаждении уменьшается (единственным известным исключением является вода, которая после охлаждения ниже +4 ˚С начинает расширяться).
    Температурное изменение объема жидкости определяется температурным коэффициентом объемного расширения βT-1):

    βT = (ΔV/V)ΔT,

    где: ΔV = V - V1 = разность объемов после и до изменения температуры на величину ΔT.

    Температурный коэффициент объемного расширения показывает, на какую часть от первоначального состояния изменяется первоначальный объем жидкости при изменении температуры на 1˚K.
    Очевидно, что плотность жидкости тоже зависит от ее температуры:

    ρ = m/V = m/(ΔV + V1) = m/V1(1 + βTΔT) = ρ1/(1 + βTΔT).

    где: ρ1 плотность жидкости до изменения температуры на величину ΔT.

    Пример решения задачи:

    Определить плотность минерального масла при температуре 380 К, если при температуре 300 К она равна 0,893 кг/м3. Температурный коэффициент объемного расширения масла βT = 0,0076 К-1.

    Решение: по приведенной выше формуле получаем:

    ρ = = ρ1/(1 + βTΔT) = 0,893/[1+ 0,0078(380 - 300)] = 0,842 г/м3.

    ***

    

    Сжимаемость (объемная сжимаемость, объемная упругость) – это способность жидкости изменять объем при сжатии, т. е. действием на нее давления. Объемная сжимаемость показывает, на какую величину изменится первоначальный объем жидкости при изменении оказываемого на нее давления на 1 Па.

    Сжимаемость характеризуется коэффициентом сжимаемости βv.
    Коэффициентом сжимаемости (объемного сжатия) называется отношение относительного изменения объема жидкости ΔV/V к изменению давления Δp:

    βv = - (ΔV/V)/Δp

    Знак «минус» в формуле обусловлен тем, что положительному приращению давления р соответствует отрицательное приращение (т.е. уменьшение) объема V.
    При изменении давления до 500 атм (49 МПа) коэффициент βv для воды практически постоянен и равен 4,9×10-10 м2 (Па-1).

    Величину, обратную объемной сжимаемости, называют модулем объемного сжатия (Па):

    Еж = 1/βv

    Объемная сжимаемость не является постоянной характеристикой, она зависит от температуры жидкости и оказываемого на нее давления. Однако при давлениях, наиболее часто применяемых на практике в механизмах и устройствах, объемная сжимаемость жидкостей очень мала, и в обычных гидравлических расчетах ей пренебрегают, учитывая лишь в особых случаях, например, при расчетах некоторых гидроприводов, гидроавтоматики и явлениях гидроудара.

    С упругими свойствами капельных жидкостей связаны, также, представления о сопротивлении жидкостей растяжению, т. е. деформации, обратной сжатию. Теоретически в капельных жидкостях могут возникать значительные напряжения растяжения, но в реальных жидкостях при наличии в них даже весьма незначительных примесей (твёрдые частицы, газы) уменьшает величину сопротивления жидкости растяжению практически до нуля.
    По этой причине можно считать, что в капельных жидкостях напряжения растяжению невозможны.

    ***

    Вязкостью называют свойство жидкости оказывать сопротивление относительному движению (сдвигу) слоев жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, которые не проявляются в покоящейся жидкости.
    Силы трения возникают из-за сцепления между молекулами и всегда действуют по касательной к плоскости относительного перемещения слоев жидкости. По этой причине в подвижных жидкостях возникают касательные напряжения τ (Па):

    τ = Pt/S = µ×dv/dn,

    где: Pt – сила внутреннего трения (Н), между слоями жидкости, отстоящими друг от друга на бесконечно малом расстоянии dn; выражение dv/dn является градиентом скорости, характеризующим изменение скорости частиц жидкости в соседних слоях, отстоящих на расстоянии dn; S – площадь соприкосновения этих слоев, м2; µ - коэффициент пропорциональности, называемый динамической вязкостью.

    Динамическая вязкость характеризует касательное напряжение, создаваемое силами внутреннего трения между слоями жидкости, отстоящими по нормали на расстояние 1 м при относительной скорости 1 м/с.
    Динамическая вязкость показывает, какую работу на единицу объемного расхода жидкости надо совершить для преодоления сил внутреннего трения.
    Единицей динамической вязкости является Па×с:

    Па×с = Работа/Объемный расход = Н×м/(м3/с) = Дж×с/м3.

    Кроме динамической вязкости, в практических расчетах часто пользуются понятием кинематической вязкости v (м2/с), которая представляет собой отношение динамической вязкости жидкости к ее плотности:

    v = µ/ρ

    Вязкость капельных жидкостей зависит от многих факторов: температуры, внешнего давления, количества растворенного в жидкости газа. Вязкость многих масел уменьшается при многократном дросселировании через тонкие отверстия и щели различных элементов гидросистем.

    Кинематическую вязкость жидкостей измеряют вискозиметрами.
    Вискозиметр представляет собой U-образную стеклянную трубку, в колено которой впаян тонкий капилляр с двумя расширениями и меткой между ними. При измерении вязкости определяют время τ протекания исследуемой жидкости под действием силы тяжести через метку из одного расширения капилляра в другое, и применяют формулу:

    v = agτ/9,807,    где а - постоянная вискозиметра.

    ***

    Для упрощения теоретических исследований и выводов Л. Эйлер ввел понятие «идеальная жидкость» - воображаемая жидкость, которая обладает абсолютной подвижностью, несжимаема и не обладает вязкостью, т. е. при движении в ней не возникают силы внутреннего трения.
    Для применения к реальным жидкостям теоретических выводов, полученных для идеальных жидкостей, вводят поправки или коэффициенты, установленные экспериментально.

    ***

    Поверхностное натяжение жидкости

    Когда мы говорим о жидкости как о сплошной среде, это вовсе не означает, что эта среда бесконечна и безгранична. Жидкое тело всегда имеет границы, это либо твёрдые стенки каналов, либо границы раздела с газообразной средой, либо это граница раздела между различными несмешивающимися жидкостями. Такие границы можно с полным правом называть естественными границами.

    В некоторых случаях границы могут выделяться условно внутри самой движущейся жидкости.
    На естественных границах в пограничном слое жидкости между молекулами самой жидкости и молекулами окружающей жидкость среды существуют силы притяжения, которые, в общем случае, могут оказаться не равными.

    В то же время силы взаимодействия между остальными молекулами жидкости, находящимися внутри объёма, ограниченного пограничным слоем эти силы взаимно уравновешены. Таким образом, остаются не уравновешенными силы взаимодействия между молекулами, находящимися лишь во внешнем (пограничном слое).
    Тогда в пограничном слое возникают напряжения, которые автоматически балансируют не сбалансированные силы притяжения. Такие напряжения называются поверхностным натяжением жидкости.

    Этому напряжению будут соответствовать силы поверхностного натяжения. Под действием этих сил малые объёмы жидкости принимают сферическую форму (форму капли), соответствующей минимуму внутренней энергии; в трубках малого диаметра жидкость поднимается (или опускается) на некоторую высоту по отношению к уровню покоящейся жидкости. Последнее явление носит название капиллярности.

    Жидкость в трубке малого диаметра (капилляре) будет подниматься, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачивающей.

    Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увеличении температуры внутренняя энергия молекул возрастает, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.

    ***

    Растворимость газов в капельных жидкостях

    В реальных жидкостях всегда находится в растворённом состоянии газ. Это может быть воздух, азот, углеводородный газ, углекислота, сероводород и др.
    Наличие газа растворённого в жидкости может оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы.

    Так при снижении давления из жидкости выделяется свободный газ, который может стать источником такого нежелательного явления как кавитация; выделяющийся газ может оказаться не безопасным для окружающей среды, огнеопасным и взрывоопасным (например, углеводородный газ).
    Газ, растворённый в жидкости, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др.
    По этой причине знание особенностей и законов растворения газа в жидкости крайне желательно.

    ***

    Основное уравнение гидростатики и закон Паскаля

    
    Главная страница


    Дистанционное образование

    Специальности

    Учебные дисциплины

    Олимпиады и тесты

    Что такое липкая жидкость?

    Вязкая жидкость — это жидкость, которая сопротивляется движению или движению объекта через жидкость. Все жидкости, жидкости, газы или плазма имеют некоторую меру вязкости, которую можно сравнить с помощью математических формул или прямых измерений движения. Хотя все жидкости вязкие, вязкая жидкость, в обычном смысле этого слова, — это жидкость с высоким уровнем вязкости. Эти типы жидкостей могут двигаться медленно или вообще не двигаться, в зависимости от их вязкости.

    Жидкости обычно измеряют от 1 до 1000 миллипаскалей, что является общепринятой мерой вязкости.Газы имеют гораздо меньшие измерения вязкости от 0,001 до 0,01 миллипаскалей в секунду. На уровне моря и комнатной температуре вода измеряет примерно 1 миллипаскаль в секунду. Это измерение охватывает давление, предел прочности на растяжение и движение и показывает степень, в которой жидкость сопротивляется движению. Более вязкая жидкость будет иметь более высокое значение в миллипаскалях в секундах, тогда как менее вязкая жидкость будет иметь более низкое значение.

    Тип жидкости является основным фактором, определяющим вязкость, хотя другие факторы, включая температуру, также влияют на вязкость.Обычно жидкости становятся менее вязкими по мере повышения их температуры, а газы — более вязкими по мере повышения их температуры. Газы становятся более вязкими при нагревании, потому что атомы в газе движутся быстрее при повышении температуры, вызывая больше столкновений между атомами и, следовательно, большее сопротивление. Давление также может влиять на вязкость, хотя это обычно не наблюдается в жидкостях, потому что, в отличие от газообразного вещества, жидкое вещество очень трудно сжимать.

    Вещество, которое можно назвать вязкой жидкостью, в некоторой степени тормозит движение. Это означает, что жидкость не течет или течет очень медленно, когда на нее действует такая сила, как гравитация. Это также означает, что он сопротивляется движению объекта через него.

    Чрезвычайно вязкая жидкость может иметь свойства, заставляющие ее вести себя скорее как твердое тело, чем как жидкость. Сливочное масло является примером очень вязкой жидкости. Хотя масло течет при комнатной температуре, оно настолько устойчиво к движению, что его трудно воспринимать как жидкость.Нагревание масла сделает его заметно менее липким. Стекло тоже жидкость. По мере того как стекло остывает и затвердевает до твердого состояния, его вязкость приближается к бесконечности, а значит, оно совсем не течет.

    ДРУГИЕ ЯЗЫКИ
    .

    Что такое

    Тормозная жидкость

    Тормозная жидкость - что она содержит?

    Работа тормозной жидкости заключается в передаче усилия (давления) от педали тормоза к тормозным колодкам. С химической точки зрения это многокомпонентная смесь, которая может включать, например, алкиловые эфиры, этиленгликоли, боратные эфиры или полипропиленгликоли. Все тормозные жидкости также содержат присадки, в т.ч. повышение их стойкости к пенообразованию и облагораживанию.Они призваны улучшить важнейшие параметры работы тормозной жидкости – вязкость и температуру кипения.

    Что такое DOT?

    Все тормозные жидкости имеют маркировку DOT на этикетках и арабские цифры, обозначающие назначение тормозной жидкости. Самое старое поколение ДОТ-3 (в настоящее время практически не используется) использовалось в автомобилях 1980-х и 1990-х годов. В настоящее время наиболее популярными являются тормозные жидкости DOT-4, которые обычно используются в легковых автомобилях, мотоциклах, грузовиках, автобусах и аккумуляторных грузовиках.В автомобилях мы также можем найти тормозные жидкости с маркировкой DOT-5 с дополнительным содержанием силиконов (они обеспечивают лучшее влагопоглощение и более высокую температуру кипения). Разновидностью жидкостей ДОТ-5 является категория ДОТ-5.1, предназначенная в основном для автомобилей, оснащенных системой ESP.

    Какие параметры наиболее важны?

    Важнейшими параметрами всех типов тормозных жидкостей являются вязкость и температура кипения. Чем ниже вязкость жидкости, тем быстрее изменяется давление в тормозной системе и тем короче тормозной путь автомобиля.Температура кипения, в свою очередь, определяет термическую стойкость тормозной жидкости к термическим перегрузкам. Различают два типа температуры кипения: сухую и влажную (из-за присутствия воды). В случае ДОТ-3 «сухое» кипение колеблется в районе 205°С, а «мокрое» начинается при 140°С (ДОТ-5 — 260 и 180°С).

    Что такое «паровая пробка»?

    При повышении температуры тормозной жидкости тормозная жидкость закипает, что приводит к образованию пузырьков воздуха.Последние не передают давления, что воспринимается как временное отсутствие тормозной силы — тогда возникает явление т. н. газовая подушка (паровая пробка). Водитель испытывает чрезмерную «мягкость» педали тормоза, так как сначала сжимается воздух, а затем тормозная жидкость.

    Когда заменять?

    Тормозную жидкость следует менять каждые два года или после пробега до 40 000 км. км. Его следует заменять новым всякий раз, когда появляется паровая пробка.Тормозную жидкость также заменяют, когда она становится заметно темнее, что доказывает, что она работает при температурах, близких к температуре кипения.

    .

    ДМСО жидкий | 100% натуральный жидкий ДМСО

    Жидкий ДМСО (диметилсульфоксид) - Health and Nature

    Здоровье и природа ®

    Натуральный продукт, полученный из древесной массы

    • Емкость: 250 мл, 500 мл и 1000 мл
    • Тип упаковки: бутылка из темного стекла
    • хранение: жидкость ДМСО следует хранить в прохладном и темном месте
    • производитель: Здоровье и природа

    Жидкость ДМСО – что это такое?

    ДМСО жидкий (диметилсульфоксид) — это натуральное лекарство, полученное из коры, которое можно использовать как наружно, так и перорально.Это органическое соединение серы, которое является 100% натуральным , благодаря чему оно безопасно в использовании и обладает рядом свойств для здоровья. Он имеет вид бесцветной, прозрачной жидкости без запаха. Слегка маслянистая текстура жидкости DMSO делает ее идеально впитываемой в кожу и всасываемой в процессе пищеварения - в зависимости от применения. Поддерживает лечение поражений кожи, ускоряет и усиливает действие других средств и увлажняет организм. Какие еще полезные свойства проявляет ДМСО в жидкости?

    Свойства жидкого ДМСО

    Жидкий

    ДМСО можно использовать перорально или наружно.Препарат обладает многими оздоровительными свойствами и оказывает следующее действие:

    • Ускоряет борьбу с воспалением - Жидкий ДМСО, нанесенный на кожу, прекрасно впитывается и частично обезболивает кожу и мышечные ткани. Благодаря этому он ускоряет лечение воспалений, например суставов, и уменьшает сопровождающие их боли. Однако внутрь он используется для лечения интерстициального цистита. Раствор ДМСО вводят в мочевой пузырь через катетер.Это позволяет более тщательно удалить бактерии, вызывающие воспаление. Одна процедура обычно длится до 15 минут и длится до 8 недель.
    • Борется со свободными радикалами и раковыми клетками - Сторонники альтернативной медицины используют ДМСО в жидкости для лечения рака. Исследования показывают, что средство предотвращает размножение раковых клеток, делая медикаментозное лечение более эффективным. Кроме того, жидкость DMSO содержит соединения серы, которые борются со свободными радикалами, ответственными за старение организма и являющимися основной причиной болезней сердца и рака.По этой причине жидкость, содержащая ДМСО, может ускорить восстановление и замедлить процесс образования морщин.
    • Способствует заживлению ран - Жидкий ДМСО, наносимый на рану, поддерживает регенерацию тканей, тем самым ускоряя заживление. В особенности рекомендуется при агрессивных ранах, процесс заживления которых затруднен. В этом случае достаточно аккуратно растереть жидкостью рану и ее окрестности, чтобы снять покраснение, боль и предотвратить суперинфекцию. Аналогично жидкость ДМСО можно наносить на пролежни с целью устранения изъязвлений и предотвращения гнилостных процессов в кожной ткани.В случае глубоких ран смазывать их средством стоит до окончания периода образования рубца, поскольку оно значительно снижает его заметность. Поэтому особенно рекомендуется при рубцах на лице, шее и т. д.
    • Поддерживает работу иммунной системы - Жидкость ДМСО, принимаемая перорально в соответствующих дозах, поддерживает работу иммунной системы. Это связано с увеличением количества тучных клеток в соединительной ткани, которая имеется во всех тканях организма.Таким образом активируется система защиты, благодаря которой организм быстрее и легче борется: с бактериями, грибками, вирусами, микроорганизмами и всевозможными возбудителями. Жидкость ДМСО , нанесенная на кожу, ускоряет борьбу с кожными заболеваниями, вызванными действием микроорганизмов.
    • Очищает организм - ДМСО в жидкости обладает мочегонным действием, поэтому очищает организм от накопившихся токсинов. Его можно использовать при камнях в почках для ускорения выведения.Кроме того, мочегонный эффект уменьшает отеки, вызванные задержкой воды в организме.
    • Увлажняет тело - Жидкий ДМСО, нанесенный на кожу, улучшает ее внешний вид. Он проникает во внешний слой и улучшает транспорт питательных веществ к клеткам. В результате кожа становится более упругой и устойчивой к вредным внешним факторам. ДМСО увлажняет клетки и вызывает изменения в структуре клеточной воды
    • Борется с психическими расстройствами — Исследования показывают, что ДМСО может восстанавливать психическое равновесие, поскольку он является антипсихотическим и анксиолитическим.
    • Обладает радиозащитными свойствами - поэтому, особенно ДМСО, жидкость рекомендуется людям, подвергающимся рентгенологическим исследованиям. Этот тип волн повреждает клетки и приводит ко многим заболеваниям, включая рак. Поэтому пероральный прием раствора ДМСО снижает воздействие вредных лучей и укрепляет ткани, делая их более устойчивыми.

    Жидкий ДМСО – как он действует на организм?

    Жидкость

    ДМСО содержит органическую серу, которая необходима для правильного функционирования клеток.Он поддерживает удаление токсинов из организма и ускоряет производство новых клеток. Сера нужна для правильного усвоения питательных веществ на клеточном уровне, благодаря чему они становятся более крепкими и устойчивыми к вредным факторам. Нанесение ДМСО на кожу может улучшить ее упругость, так как он увеличивает способность клеток поглощать питательные вещества и способствует усвоению косметических средств по уходу за кожей.

    Противопоказания к применению жидкого ДМСО

    Жидкость

    ДМСО не следует применять перорально беременным и кормящим женщинам, а также людям, страдающим: диабетом, заболеваниями печени и некоторыми аллергиями.В этом случае проконсультируйтесь с врачом по поводу лечения. Когда дело доходит до наружного применения жидкости ДМСО, во время лечения будьте осторожны с любыми вредными факторами, которые могут проникнуть в слой кожи и вызвать раздражение.

    Жидкость

    ДМСО является отличным источником серы, которая обладает многими ценными целебными свойствами. Если нет противопоказаний, стоит использовать этот препарат. Если вы сомневаетесь, проконсультируйтесь с врачом.

    Важно:

    Вещество поддерживает различные состояния в зависимости от температуры.

    При температуре ниже +19 градусов Цельсия жидкость ДМСО имеет кристаллическую форму, выше этой температуры – жидкость.

    Переход из одного состояния в другое может повторяться и не влияет на качество продукта.

    .

    Охлаждающая жидкость - AutoScout24

    В первую очередь охлаждающая жидкость влияет на долговечность системы охлаждения и двигателя.

    Что такое радиаторная жидкость?

    Охлаждающая жидкость — это не что иное, как жидкость, которая используется в автомобильных системах охлаждения. Он передает тепловую энергию между радиатором и двигателем, рассеивая около 30% тепловой энергии, содержащейся в сгоревшем топливе. Он заменяет воду и имеет гораздо более низкую температуру застывания, и в то же время более высокую температуру кипения.Эта специфичность выпускается во многих разновидностях, основой которых является пропиленгликоль или этиленгликоль. Радиаторные жидкости могут различаться не только по составу, но и по назначению, так как охладители могут изготавливаться из различных сплавов. Хотя этиленгликоль обладает лучшими свойствами, чаще используется пропиленовая форма. Это связано с тем, что, в отличие от этилгликоля, его пропиленовый аналог не обладает токсичными свойствами. Кроме того, жидкости на основе пропиленгликоля требуют наличия вещества, препятствующего размножению микробов, а также антикоррозийных присадок в значительно большем количестве и более высокого качества.Это сказывается на большей стоимости такой жидкости. Стоит помнить, что охлаждающая жидкость вредна для человека – может произойти отравление этиленгликолем. Радиаторные жидкости чаще всего выпускаются в виде концентрата для разбавления деминерализованной или дистиллированной водой, хотя наибольшей популярностью пользуются готовые водные растворы. Помимо компонентов, предотвращающих коррозию или обладающих антикальцинационными свойствами, они также содержат примеси, не позволяющие жидкости вспениваться, а также препятствующие повреждению резиновых деталей системы охлаждения.

    Зачем менять охлаждающую жидкость?

    Довольно часто проверка охлаждающей жидкости ограничивается проверкой ее уровня и температуры замерзания. Если после проверки окажется, что все в порядке и охлаждающая жидкость не нуждается в замене, стоит обратить внимание еще на один вопрос. Добавки, защищающие систему охлаждения, не являются постоянными. Через какое-то время они просто теряют свои свойства и перестают защищать радиатор. В зависимости от производителя автомобиля и типа охлаждающей жидкости интервалы замены будут разными.При несвоевременной замене жидкости пользователь транспортного средства должен учитывать риск повреждения автомобиля, что повлечет за собой солидные затраты на ремонт. Повреждению может подвергнуться не только сам радиатор, но и водяной насос или прокладка ГБЦ. Стареющую жидкость, по рекомендациям специалистов, следует менять раз в два-три года. Регулярная замена снижает риск повреждения автомобиля и должна положительно сказаться на безопасности и комфорте использования автомобиля. Также стоит проверять точку замерзания каждые несколько месяцев.Категорически недопустимо доливать воду в бачок радиатора, особенно зимой. Это может привести к серьезному отказу двигателя. В свою очередь, слишком малое количество жидкости может привести к перегреву двигателя летом или переохлаждению зимой. Планируя замену жидкости, также хорошо подумать о замене термостата, особенно если он находится в эксплуатации несколько лет или сопровождается десятками тысяч километров пробега. Хотя производители жидкостей уверяют, что имеющиеся на рынке средства можно смешивать между собой, стоит иметь в виду, что не все жидкости имеют одинаковый состав.Некоторые компоненты в сочетании с компонентами, полученными из других жидкостей, могут ухудшить защиту от коррозии и даже способствовать образованию агрессивного вещества, мешающего правильной работе холодильной системы. Недопустимо смешивать жидкости с органическими добавками с неорганическими жидкостями.

    Типы охлаждающих жидкостей

    В автомобилях используются три основных типа охлаждающих жидкостей: OAT, IAT и HOAT.Чем отличаются эти жидкости? На практике - антикоррозийные присадки. В старых автомобилях чаще всего используются жидкости по технологии IAT (Inorganic Additive Technology), которая создана на основе неорганических присадок. В них довольно быстро накапливаются силикаты, поэтому качество их невысокое. Низкая износостойкость – их самый большой недостаток, поэтому следует помнить о замене такой жидкости хотя бы раз в два года. В новых конструкциях с алюминиевыми системами охлаждения используются жидкости OAT (технология органических кислот), не содержащие силикатов, содержащие органические антикоррозионные присадки.С другой стороны, жидкости на основе растворов НОАТ содержат гибридные органические добавки. Последние два вида жидкостей имеют более длительный срок службы и их можно менять даже раз в пять лет. Вещества для радиатора могут быть разного цвета. Что означают разные цвета? В них обычно указывается технология производства, хотя это не обязательно так. Самый распространенный хладагент – красный G12, но также доступны розовые, оранжевые и даже бесцветные жидкости. Это меры, выполненные по технологии ОАТ.Напротив, зеленые или синие жидкости часто ассоциируются с технологией IAT. Фундаментальные знания о охлаждающих жидкостях позволят водителю избежать проблемы упущенной покупки. В случае сомнений лучше обратиться к фирменным решениям, основанным на современных технологиях, предназначенных для конкретных систем охлаждения. Кроме того, соблюдение предписанных интервалов замены жидкости, а также контроль уровня и качества предотвратят серьезные неисправности как системы охлаждения, так и двигателя.

    .90 000 Предэякулят - что это? Содержит ли предэякуляционная жидкость сперму? Предэякулят (или предэякуляционная жидкость) представляет собой бесцветные выделения, которые выходят из полового члена при сексуальном возбуждении, но это происходит до того, как мужчина достигает оргазма. Предэякулят вырабатывается мужскими бульбоуретральными и трубчатыми железами, которые также выделяют слизь. Предэякуляционная жидкость может вырабатываться железами каждого мужчины в разном количестве.У одних мужчин она практически вообще не выделяется, а у других количество этой жидкости может быть большим, оно может составлять даже 5 мл.

    Какова функция предэякуляторной жидкости?

    Preejaculate предназначен для использования в качестве естественной смазки, т. е. естественного увлажнителя во время полового акта. Кроме того, предэякуляционная жидкость также отвечает за нейтрализацию кислой реакции мочи в уретре, которая была бы смертельной для сперматозоидов, содержащихся в мужской сперме.

    Когда выделяется предэякуляционная жидкость?

    Секреция преалуката всегда происходит во время сильного полового возбуждения, но даже до полной эякуляции спермы. Следует помнить, что количество вырабатываемого предэякулята зависит от индивидуальной предрасположенности каждого джентльмена - у одних мужчин предэякуляционная жидкость вообще не вырабатывается, а у других она вырабатывается в больших количествах.Луковично-уретральные и трубчатые железы отвечают за секрецию предэякулята.

    Содержит ли преэякулят сперматозоиды?

    Исследования показали, что преэякулят может содержать сперму. Однако количество сперматозоидов, просачивающихся в предэякуляторную жидкость, невелико, и они очень слабые или даже мертвые. Однако это не меняет того факта, что для оплодотворения нужен только один живой сперматозоид, и он сможет добраться до яйцеклетки и оплодотворить ее.

    Таким образом, нельзя исключать, что оплодотворение не будет вызвано только наличием предэякуляционной жидкости, что иногда приводит к незапланированной беременности.

    Преэякулят и беременность

    Поскольку предэякуляционная жидкость может содержать небольшое количество живой спермы, иногда простое ее присутствие (без полной эякуляции спермы) во время полового акта может привести к оплодотворению. Такая ситуация может произойти, когда живая пара использует прерывистый половой акт в качестве метода контрацепции.Что такое проигрышные отношения? Прерывистый половой акт означает, что партнер умело извергает половой член из влагалища партнера до эякуляции спермы. Поэтому можно сказать, что эффективность этого «метода контрацепции» определяется только опытом и интуицией партнера.

    Однако прерывистый половой акт сложно назвать методом контрацепции, так как он часто очень ненадежен (Эффективность оценена в 96%, при полном выполнении рекомендаций). Он, несомненно, основан на случайности и не гарантирует, что половой акт позволит избежать незапланированной беременности.

    Эффективные методы контрацепции

    Презервативы

    Если живая пара пока не хочет иметь детей, им обязательно следует заниматься только периодическими половыми актами и вводить дополнительные методы контрацепции. Так что же это могут быть за методы, которые эффективно предохранят от беременности? Презервативы по-прежнему являются самым распространенным средством контрацепции. Они легкодоступны и относительно дешевы, но не дают наивысшей эффективности и могут быть ненадежными.Однако стоит отметить, что только они защищают от возможного заражения инфекционными и венерическими заболеваниями. Сочетание презерватива и одного из методов гормональной контрацепции действительно эффективно.

    Противозачаточные таблетки

    Еще одним популярным методом контрацепции являются противозачаточные таблетки. До недавнего времени женщины неохотно их применяли, опасаясь побочных эффектов от приема гормональных препаратов. Видение увеличения веса, мигреней, набухания и болезненности груди, перепадов настроения, незапланированных кровотечений и снижения либидо эффективно уменьшали желание принимать таблетки.Назначаемые в настоящее время таблетки составлены таким образом, что количество побочных эффектов действительно незначительно. Конечно, они могут появляться, но обычно только в начале применения и исчезают после 2-3 циклов применения препарата. Конечно, все зависит от организма женщины и ее переносимости препарата. Однако следует помнить, что при плохой переносимости препарата у гинеколога столько вариантов выбора, что он обязательно подберет подходящий для пациентки. Кроме того, при правильном использовании и соблюдении всех правил их эффективность действительно очень высока (более 99%).В настоящее время также для кормящих женщин существуют противозачаточные таблетки, эффективно предохраняющие от беременности, и не опасные для ребенка.

    Противозачаточные пластыри и вагинальные кольца

    Другой формой контрацепции, эффективно предохраняющей от беременности, является противозачаточный пластырь. Все больше женщин решают использовать трансдермальные пластыри, то есть популярные противозачаточные пластыри. Правильно наложенный пластырь не отклеится во время купания или занятий спортом.Он эффективен и удобен в использовании. Довольно часто женщины также используют специальные диски, которые помещаются внутрь влагалища. Диски, выделяя гормоны, блокируют сперматозоиды, что препятствует оплодотворению. До недавнего времени вагинальное кольцо не было очень популярно в Польше, но в настоящее время женщины используют его все чаще. Это удобно в использовании. После того, как диск правильно вставлен, он остается во влагалище в течение 3 недель и только после этого времени его следует удалить. Таким образом, вам не нужно помнить о ежедневном приеме перорального препарата.Возможные побочные эффекты (кровотечение, головные боли, дискомфорт во влагалище, снижение либидо, боль в груди, увеличение веса, акне, выпадение дисков) также встречаются редко и обычно быстро исчезают. Эффективность диска сравнима с противозачаточными таблетками.

    .

    AdBlue - Рабочие жидкости - Автохимия

    AdBlue - часто задаваемые вопросы

    Что такое AdBlue?

    AdBlue представляет собой водный раствор мочевины номинальной концентрацией 32,5%, собранный в отдельный бак. AdBlue, как следует из названия, не синий. Это бесцветная и нетоксичная жидкость, состоящая из мочевины (32,5%) и деминерализованной воды (67,5%). Его можно приобрести на заправке, так как он впрыскивается в выхлопную систему.

    Для чего используется AdBlue?

    AdBlue используется в автомобильной промышленности в качестве восстановителя, задачей которого является разложение в каталитическом нейтрализаторе SCR (Selective Catalytic Reduction) экологически вредных оксидов азота, образующихся при сгорании топлива в дизельном двигателе. В течение многих лет он использовался в автобусах и грузовиках, а относительно недавно — в легковых автомобилях.

    Как заправить AdBlue?

    Чаще всего рядом с заливной горловиной находится еще и заливная горловина AdBlue. Реставрацию можно сделать самостоятельно. Лучше и безопаснее всего заправляться прямо из колонки на АЗС. Операция ничем не отличается, например, от добавления жидкости стеклоомывателя. Некоторые пакеты имеют специальную воронку для облегчения подачи заявки.

    Как запустить машину с AdBlue?

    В AdBlue много воды, поэтому замерзает при температуре -11С.Системы Adblue обычно имеют электронагреватель для подогрева жидкости в холода. Может случиться так, что нагреватель не работает - это может привести к повреждению системы. Автомобиль обычно заранее предупреждает о низком уровне AdBlue. Не затягивайте с пополнением. AdBlue теряет свои свойства под действием УФ-лучей, поэтому его нельзя хранить на солнце.

    Следует ли добавлять AdBlue в топливо?

    Нет! Никогда! Никогда не добавляйте AdBlue в топливный бак.Добавление AdBlue в топливо в баке может повредить систему впрыска и, теоретически, весь двигатель. В свою очередь, добавление топлива в бак AdBlue повредит компоненты SCR и систему AdBlue. Не запускайте двигатель, зовите на помощь! Дешевле будет отбуксировать машину в мастерскую и почистить бак, чем пытаться ездить в таких условиях.

    Подробнее

    Что такое AdBlue?

    AdBlue представляет собой жидкий раствор мочевины высокой чистоты с концентрацией 32,5 %.Вышеупомянутое название также является товарным знаком Немецкой ассоциации автомобильной промышленности (Verband der Automobilindustrie). Задача AdBlue – очищать выхлопные газы от вредных оксидов азота. Раствор заливается под высоким давлением с помощью инжектора в систему катализатора SCR (селективное каталитическое восстановление). Затем AdBlue вступает в химическую реакцию с вредными для окружающей среды оксидами азота. Под действием жидкости оксиды азота разлагаются на азот и водяной пар – эти элементы не наносят вреда окружающей среде.

    Стоит знать, что AdBlue используется только в дизельных двигателях. Это правда, что не каждый дизельный автомобиль использует AdBlue. Однако стандарты выбросов выхлопных газов становятся все строже и строже. Согласно многим объявлениям, в ближайшие годы каждый автомобиль, оснащенный дизельным двигателем, также будет использовать AdBlue. Все это для ограничения выброса оксидов азота и выполнения требований европейского стандарта выбросов ЕВРО 6 от 2014 года. Вскоре мы введем стандарт EURO 7, который будет еще более строгим.

    AdBlue — цена, потребление и преимущества

    Сколько стоит AdBlue? Мы заплатим около 10-14 злотых за 5-литровую тару. Среди предложений мы также можем найти баки большего размера - 10 литров AdBlue стоят около 20 злотых, а 18-литровый бак стоит 30-35 злотых. Оригинальный AdBlue стоит дороже – на баке чаще всего отмечают автомобильные концерны. В этом случае стоимость жидкости составляет около 45 злотых за 5 литров.

    Надо еще знать, как хранить AdBlue - проблема может возникнуть, прежде всего, зимой.Во-первых, жидкость агрессивна. Во-вторых, при понижении температуры ниже -11,5 градусов Цельсия AdBlue кристаллизуется. Если кристаллы осядут на дно бака в машине, их будет трудно растворить. Вопрос в том, сколько AdBlue расходует автомобиль? Обычно это около 5% от общего расхода топлива. Итак, предположим, что наша машина сжигает 8 литров дизельного топлива на 100 км. На практике это будет 0,4 литра AdBlue на 100 км. Поэтому стоимость AdBlue на 100 км очень низкая.Допустим, мы купили жидкость в 5-литровом баке за 12 злотых - расход AdBlue на 100 км будет всего 96 грошей.

    Однако преимущества использования AdBlue велики — автомобиль соответствует стандартам ЕС по выбросам выхлопных газов, что снижает загрязнение окружающей среды. Автомобили станут менее аварийными, а расход топлива снизится примерно на 5% при оптимизированных настройках двигателя.

    .

    Выбор охлаждающей жидкости - о чем следует помнить?

    Замена охлаждающей жидкости кажется проще, чем ее выбор. На рынке представлено множество продуктов, различающихся по химическому составу, характеристикам или цвету. Мы советуем вам, на что обратить внимание при выборе радиаторной жидкости, и отвечаем на самые распространенные вопросы.

    Купить охлаждающую жидкость на Ucando.pl

    Дешевле до -40% с бесплатной круглосуточной курьерской доставкой. Беспроблемный обмен и возврат запчастей в течение 30 дней

    Зачем заменять?

    Охлаждающая жидкость со временем теряет свои свойства.Его задача — охлаждать двигатель, но при этом он не может повредить узлы привода и сам радиатор. Работает в сложных условиях, при которых, во-первых, испаряется часть объема, во-вторых, жидкость теряет антикоррозийные свойства и устойчивость к экстремальным температурам.

    «Жидкость заменяется для поддержания чистоты системы и сохранения параметров охлаждения», - объясняет Томаш Островски, эксперт Ucando.pl. - "Небрежность обычно заканчивается выходом из строя водяной помпы или радиатора, либо перегревом двигателя из-за потери параметров жидкости или ее загрязнения.Как известно, такие поломки всегда случаются в самый неподходящий момент, например, в пробке по дороге в отпуск или морозным утром по дороге на работу».

    Охлаждающую жидкость рекомендуется менять не реже одного раза в пять лет, на практике каждые 2-4 года или каждые 40-100 тысяч километров пробега. Это также стоит делать, например, при более толстых работах с системой охлаждения, например, после герметизации течи. В случае незначительных потерь — обнаруживаемых при проверке уровня жидкости в расширительном бачке — их достаточно долить.

    Долив охлаждающей жидкости

    Дистиллированной воды достаточно для кратковременного восполнения небольших потерь. Гликоль испаряется намного медленнее, чем вода, поэтому нормальные эксплуатационные потери в основном связаны с нехваткой воды. Добавление жидкости или даже концентрата может парадоксальным образом ухудшить свойства охлаждающего материала. Именно вода обеспечивает должную эффективность охлаждающей жидкости.

    Гликоль и вода

    Помните, однако, что обычная дистиллированная вода никогда не заменит охлаждающую жидкость! Мы даже не учитываем водопроводную воду, потому что она способствует отложению накипи в системе.Теплоноситель зимой не должен замерзать, а оптимальная температура кипения должна быть в пределах 120-140 градусов Цельсия. Между тем, как мы прекрасно знаем, вода замерзает при нуле градусов, а кипит при 100 градусах.

    Водно-гликолевая смесь морозостойка (до -38 градусов) и устойчива к кипению при температурах, превышающих оптимальные условия работы двигателя - примерно 90 градусов.

    Имеющиеся в продаже концентраты

    необходимо разбавлять деминерализованной водой в пропорции, указанной производителем! Сам концентрат гликоля кристаллизуется или загустевает примерно при температуре от -10 до -12 градусов Цельсия.Кроме того, содержащиеся в нем антикоррозийные присадки могут просто повредить систему охлаждения, если их не разбавлять.

    Смешивание охлаждающих жидкостей

    Как правило, охлаждающие жидкости можно смешивать, но следует избегать использования жидкостей с разными спецификациями и технологиями. Вместо того, чтобы доверять этикеткам, восхваляющим смешиваемость, обратите внимание на тип жидкости. Тремя основными являются IAT, OAT и HOAT. Первый тип представляет собой раствор неорганических добавок, используемый в старых автомобилях.Характеризуется в первую очередь пониженной долговечностью, менять такую ​​жидкость нужно раз в два года. Его можно заменить более современной технологией HOAT (гибридные органические добавки). С другой стороны, тип OAT — с органическими добавками — подходит для более новых систем охлаждения с алюминиевыми элементами.

    На этом отличия жидкостей не заканчиваются. "Важно классифицировать по содержанию силикатов" - говорит Томаш Островски. - «Жидкость G11 имеет содержание силикатов 500-680 миллиграмм на литр, жидкость G12/G12+ бессиликатный, а жидкость G12++/G13 имеет содержание 400-500 мг/л.Не рекомендуется смешивать жидкости, содержащие силикаты, с не содержащими их. Жидкости старшего поколения G11 нельзя смешивать с жидкостями класса G12 или G12+».

    Имеет ли значение цвет?

    Смешивание жидкостей по цвету опасно. В настоящее время жидкости окрашиваются исключительно для помощи в обнаружении утечек, и цвета больше не служат в качестве идентификационного признака. Как правило, старые жидкости IAT можно определить по их зеленому или синему цвету, в то время как органические жидкости имеют тенденцию быть оранжевыми или розовыми.Однако цвет должен служить лишь ориентиром. Информация о типе жидкости должна быть указана на этикетке. Только так можно избежать такого смешения жидкостей, которое может привести к снижению эффективности системы охлаждения или даже к повреждению двигателя.

    Аварийный

    Помните, что в экстренной ситуации лучше долить что-нибудь в радиатор, чем рисковать перегревом двигателя. Конечно же, после такого происшествия следует как можно быстрее промыть всю систему и с самого начала заполнить ее соответствующей жидкостью.

    .

    Смотрите также

     

    2011-2017 © МБУЗ ГКП №  7, г.Челябинск.